Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Seik Weng Ng

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.050$
$w R$ factor $=0.136$
Data-to-parameter ratio $=17.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Rerefinement of dichloro[3-(1,10-phenanthro-lin-2-yl)-5,6-diphenyl-1,2,4-triazine]copper(II) as an anhydrous structure

The crystal structure of $\left[\mathrm{CuCl}_{2}\left(\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{~N}_{5}\right)\right]$, which was reported as a $1 / 4$ hydrate [Wang, Chao, Li, Hong, Ji \& Li (2004). J. Inorg. Biochem. 98, 423-429], has been rerefined as the anhydrous complex.

Comment

The crystal structure of triclinic $\left[\mathrm{Cu}\left(\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{~N}_{5}\right) \mathrm{Cl}_{2}\right]$ was reported as a $1 / 4$ hydrate (Wang et al., 2004). A check by PLATON (Spek, 2003) shows that the volume supposedly occupied partially by the water molecule is implausibly small, only $17 \AA^{3}$. The structure has now been rerefined without water. Although the rerefinement of the structure leads to no significant differences in bond dimensions, it nevertheless probably represents the correct formulation of the compound.

Experimental

Crystal data

$\left[\mathrm{CuCl}_{2}\left(\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{~N}_{5}\right)\right]$	$Z=2$
$M_{r}=545.90$	$D_{x}=1.515 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=10.320(1) \AA$	Cell parameters from 1900
$b=10.441(1) \AA$	reflections
$c=11.793(1) \AA$	$\theta=2.5-22.6^{\circ}$
$\alpha=98.878(1)^{\circ}$	$\mu=1.16 \mathrm{~mm}^{-1}$
$\beta=90.545(2)^{\circ}$	$T=298(2) \mathrm{K}$
$\gamma=107.244(1)^{\circ}$	Prism, blue
$V=1197.0(2) \AA^{3}$	$0.20 \times 0.15 \times 0.15 \mathrm{~mm}$
Data collection	
Bruker SMART area-detector	5360 independent reflections
diffractometer	3445 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.034$
Absorption correction: multi-scan	$\theta_{\text {max }}=27.5^{\circ}$
$(S A D A B S ;$ Bruker, 2000)	$h=-13 \rightarrow 12$
$T_{\text {min }}=0.472, T_{\text {max }}=0.845$	$k=-13 \rightarrow 13$
10453 measured reflections	$l=-15 \rightarrow 15$

Refinement

Refinement on F^{2}	H-atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$	$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0702 P)^{2}\right]$
$w R\left(F^{2}\right)=0.136$	where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$S=1.00$	$(\Delta / \sigma)_{\max }=0.001$
5360 reflections	$\Delta \rho_{\max }=1.11 \mathrm{e} \AA^{-3}$
316 parameters	$\Delta \rho_{\min }=-0.26 \mathrm{e}^{-3}$

Received 1 June 2004 Accepted 4 June 2004 Online 12 June 2004

metal-organic papers

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 1$	$2.100(3)$	$\mathrm{Cu} 1-\mathrm{Cl} 1$	$2.396(1)$
$\mathrm{Cu} 1-\mathrm{N} 2$	$1.963(3)$	$\mathrm{Cu} 1-\mathrm{Cl} 2$	$2.208(1)$
$\mathrm{Cu} 1-\mathrm{N} 3$	$2.116(3)$		
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$79.3(1)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{Cl} 1$	$95.5(1)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$154.5(1)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{Cl} 2$	$155.9(1)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Cl} 1$	$93.9(1)$	$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{Cl} 1$	$95.8(1)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Cl} 2$	$98.8(1)$	$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{Cl} 2$	$100.4(1)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 3$	$76.3(1)$	$\mathrm{Cl} 1-\mathrm{Cu} 1-\mathrm{Cl} 2$	$108.6(1)$

The diffraction data were obtained from one of the authors of the previous report (Wang et al., 2004). Aromatic H atoms were placed at calculated positions in the riding model approximation [C-H $0.93 \AA$; $\left.U(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$. The final difference Fourier map had a peak larger than $1 \mathrm{e}^{-3} \AA^{-3} 2.5 \AA$ from $\mathrm{H} 11, \mathrm{H} 23$ and H 26 , but was otherwise featureless.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; method used to solve structure: atomic coordinates taken from published structure; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The author thanks Dr. Hui Chao of Sun Yat-Sen University for the diffraction measurements, and the University of Malaya for supporting this work.

Figure 1
ORTEPII (Johnson, 1976) plot of $\left[\mathrm{Cu}\left(\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{~N}_{5}\right) \mathrm{Cl}_{2}\right]$, with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.

References

Bruker (2000). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Wang, X.-L., Chao, H., Li, H., Hong, X.-L., Ji, L.-N. \& Li, X.-Y. (2004). J. Inorg. Biochem. 98, 423-429.

